Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Innate Immun ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643762

RESUMO

Signal transducer and activator of transcription (STAT) 3 is extensively involved in the development, homeostasis and function of immune cells, with STAT3 disruption associated with human immune-related disorders. These roles have been assumed to be due to its canonical mode of action as an inducible transcription factor downstream of multiple cytokines, although alternative non-canonical functional modalities have also been described for STAT3. To further understand the roles of STAT3 gained from lineage-specific mouse knockouts, CRISPR/Cas9 was used to generate mutants of the conserved zebrafish Stat3 protein: a loss of function knockout (KO) mutant and a mutant lacking C-terminal sequences including the transactivation domain (ΔTAD). Analysis of the KO mutant identified conserved roles for Stat3 within hematopoietic stem cells impacting the development of all lineages throughout primitive and early definitive hematopoiesis, with altered immune cell populations in juveniles. The Stat3 KO mutant was unable to respond to lipopolysaccharide (LPS) or granulocyte colony-stimulating factor (G-CSF), and also exhibited significantly diminished neutrophil migration that correlated with abrogation of the Cxcl8b/Cxcr2 pathway. Many of these phenotypes were not shared by the Stat3 ΔTAD mutant. Indeed, only neutrophil and macrophage development were disrupted in these mutants with neutrophil migration actually increased, while responsiveness to LPS and G-CSF was maintained. This suggests that Stat3 participates in innate immune cell development and function through both canonical and non-canonical modalities, providing additional insights for relevant diseases.

2.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474223

RESUMO

The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.


Assuntos
Síndromes de Imunodeficiência , Neoplasias , Animais , Humanos , Janus Quinase 3/metabolismo , Transdução de Sinais , Janus Quinases/metabolismo , Receptores de Citocinas/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo
3.
Cancers (Basel) ; 16(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254802

RESUMO

Myeloproliferative neoplasms (MPNs) are hematopoietic diseases characterized by the clonal expansion of single or multiple lineages of differentiated myeloid cells that accumulate in the blood and bone marrow. MPNs are grouped into distinct categories based on key clinical presentations and distinctive mutational hallmarks. These include chronic myeloid leukemia (CML), which is strongly associated with the signature BCR::ABL1 gene translocation, polycythemia vera (PV), essential thrombocythemia (ET), and primary (idiopathic) myelofibrosis (PMF), typically accompanied by molecular alterations in the JAK2, MPL, or CALR genes. There are also rarer forms such as chronic neutrophilic leukemia (CNL), which involves mutations in the CSF3R gene. However, rather than focusing on the differences between these alternate disease categories, this review aims to present a unifying molecular etiology in which these overlapping diseases are best understood as disruptions of normal hematopoietic signaling: specifically, the chronic activation of signaling pathways, particularly involving signal transducer and activator of transcription (STAT) transcription factors, most notably STAT5B, leading to the sustained stimulation of myelopoiesis, which underpins the various disease sequalae.

4.
Biomolecules ; 13(10)2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37892192

RESUMO

The cytokine-inducible SH2 domain-containing (CISH) protein was the first member of the suppressor of cytokine signaling (SOCS) family of negative feedback regulators discovered, being identified in vitro as an inducible inhibitor of erythropoietin (EPO) signaling. However, understanding of the physiological role played by CISH in erythropoiesis has remained limited. To directly assess the function of CISH in this context, mice deficient in CISH were characterized with respect to developmental, steady-state, and EPO-induced erythropoiesis. CISH was strongly expressed in the fetal liver, but CISH knockout (KO) mice showed only minor disruption of primitive erythropoiesis. However, adults exhibited mild macrocytic anemia coincident with subtle perturbation particularly of bone marrow erythropoiesis, with EPO-induced erythropoiesis blunted in the bone marrow of KO mice but enhanced in the spleen. Cish was expressed basally in the bone marrow with induction following EPO stimulation in bone marrow and spleen. Overall, this study indicates that CISH participates in the control of both basal and EPO-induced erythropoiesis in vivo.


Assuntos
Eritropoese , Proteínas Supressoras da Sinalização de Citocina , Animais , Camundongos , Anemia/genética , Citocinas , Eritropoese/fisiologia , Transdução de Sinais/fisiologia , Domínios de Homologia de src , Proteínas Supressoras da Sinalização de Citocina/metabolismo
5.
Front Biosci (Landmark Ed) ; 28(8): 187, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37664942

RESUMO

BACKGROUND: Signal transducer and activator of transcription (STAT) proteins play key roles in development, growth, and homeostasis. These roles have principally been assigned to their "canonical" function as inducible transcriptional activators acting downstream of cytokines and other factors. However, variant "non-canonical" functions have also been identified. The potential in vivo role for non-canonical STAT functions was investigated in the zebrafish model. METHODS: Two zebrafish Stat5.1 mutants were generated using CRISPR/Cas9 that should impact canonical functionality: one with a deleted transactivation domain (ΔTAD) and another with a disrupted tyrosine motif (ΔTM). Immune cell development, growth, and adiposity of these Stat5.1 mutants were assessed in comparison to a Stat5.1 knockout (KO) mutant in which both canonical and non-canonical functions were ablated. RESULTS: Both the ΔTAD and ΔTM mutants showed significantly reduced embryonic T lymphopoiesis, similar to the KO mutant. Additionally, adult ΔTAD and ΔTM mutants displayed a decrease in T cell markers in the kidney, but not as severe as the KO, which also showed T cell disruption in the spleen. Severe growth deficiency and increased adiposity were observed in all mutants, but ΔTAD showed a more modest growth defect whereas ΔTM exhibited more profound impacts on both growth and adiposity, suggesting additional gain-of-function activity. CONCLUSIONS: These results indicate that canonical Stat5.1 plays a major role in T cell development and growth throughout the lifespan and non-canonical Stat5.1 functions also contribute to aspects of adult T lymphocyte development and growth, with alternate functions impacting growth and adiposity.


Assuntos
Fator de Transcrição STAT5 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Longevidade , Obesidade , Fator de Transcrição STAT5/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047441

RESUMO

Primary immunodeficiency (PID) disorders, also commonly referred to as inborn errors of immunity, are a heterogenous group of human genetic diseases characterized by defects in immune cell development and/or function. Since these disorders are generally uncommon and occur on a variable background profile of potential genetic and environmental modifiers, animal models are critical to provide mechanistic insights as well as to create platforms to underpin therapeutic development. This review aims to review the relevance of zebrafish as an alternative genetic model for PIDs. It provides an overview of the conservation of the zebrafish immune system and details specific examples of zebrafish models for a multitude of specific human PIDs across a range of distinct categories, including severe combined immunodeficiency (SCID), combined immunodeficiency (CID), multi-system immunodeficiency, autoinflammatory disorders, neutropenia and defects in leucocyte mobility and respiratory burst. It also describes some of the diverse applications of these models, particularly in the fields of microbiology, immunology, regenerative biology and oncology.


Assuntos
Síndromes de Imunodeficiência , Doença Inflamatória Pélvica , Doenças da Imunodeficiência Primária , Imunodeficiência Combinada Severa , Feminino , Animais , Humanos , Peixe-Zebra/genética , Modelos Genéticos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , Doenças da Imunodeficiência Primária/genética , Imunodeficiência Combinada Severa/genética
7.
Cell Mol Life Sci ; 80(4): 109, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995466

RESUMO

Signal transducer and activator of transcription (STAT) proteins act downstream of cytokine receptors to facilitate changes in gene expression that impact a range of developmental and homeostatic processes. Patients harbouring loss-of-function (LOF) STAT5B mutations exhibit postnatal growth failure due to lack of responsiveness to growth hormone as well as immune perturbation, a disorder called growth hormone insensitivity syndrome with immune dysregulation 1 (GHISID1). This study aimed to generate a zebrafish model of this disease by targeting the stat5.1 gene using CRISPR/Cas9 and characterising the effects on growth and immunity. The zebrafish Stat5.1 mutants were smaller, but exhibited increased adiposity, with concomitant dysregulation of growth and lipid metabolism genes. The mutants also displayed impaired lymphopoiesis with reduced T cells throughout the lifespan, along with broader disruption of the lymphoid compartment in adulthood, including evidence of T cell activation. Collectively, these findings confirm that zebrafish Stat5.1 mutants mimic the clinical impacts of human STAT5B LOF mutations, establishing them as a model of GHISID1.


Assuntos
Síndrome de Laron , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Fator de Transcrição STAT5/genética , Síndrome de Laron/genética , Mutação , Hormônio do Crescimento/genética
8.
Front Immunol ; 14: 1119727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969252

RESUMO

Introduction: Suppressor of cytokine signaling 3 (SOCS3) is a critical component of the negative feedback regulation that controls signaling by cytokines and other factors thereby ensuring that important processes such as hematopoiesis and inflammation occur at appropriate levels. Methods: To gain further insights into SOCS3 function, the zebrafish socs3b gene was investigated through analysis of a knockout line generated using CRISPR/Cas9-mediated genome editing. Results: Zebrafish socs3b knockout embryos displayed elevated numbers of neutrophils during primitive and definitive hematopoiesis but macrophage numbers were not altered. However, the absence of socs3b reduced neutrophil functionality but enhanced macrophage responses. Adult socs3b knockout zebrafish displayed reduced survival that correlated with an eye pathology involving extensive infiltration of neutrophils and macrophages along with immune cell dysregulation in other tissues. Discussion: These findings identify a conserved role for Socs3b in the regulation of neutrophil production and macrophage activation.


Assuntos
Proteínas Supressoras da Sinalização de Citocina , Peixe-Zebra , Animais , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Transdução de Sinais , Macrófagos , Imunidade Inata
9.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203559

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor activated canonically by numerous cytokines and other factors, with significant roles in immunity, immune diseases, and cancer. It has also been implicated in several human skeletal disorders, with loss-of-function (LOF) mutations associated with aberrant skeletal development. To gain further insights, two zebrafish STAT3 lines were investigated: a complete LOF knockout (KO) mutant and a partial LOF mutant with the transactivation domain truncated (ΔTAD). Consistent with other studies, the KO mutants were smaller, with reduced length in early embryos exacerbated by a decreased growth rate from 5 days postfertilization (dpf). They displayed skeletal deformities that approached 80% incidence by 30 dpf, with a significant reduction in early bone but not cartilage formation. Further analysis additionally identified considerable abrogation of caudal fin regeneration, concomitant with a paucity of infiltrating macrophages and neutrophils, which may be responsible for this. Most of these phenotypes were also observed in the ΔTAD mutants, indicating that loss of canonical STAT3 signaling was the likely cause. However, the impacts on early bone formation and regeneration were muted in the ΔTAD mutant, suggesting the potential involvement of noncanonical functions in these processes.


Assuntos
Fator de Transcrição STAT3 , Peixe-Zebra , Animais , Humanos , Desenvolvimento Ósseo/genética , Condrogênese , Osteogênese/genética , Fator de Transcrição STAT3/genética , Peixe-Zebra/genética
10.
Biomedicines ; 12(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38255152

RESUMO

The signal transducer and activator of transcription (STAT) family of proteins has been demonstrated to perform pivotal roles downstream of a myriad of cytokines, particularly those that control immune cell production and function. This is highlighted by both gain-of-function (GOF) and loss-of-function (LOF) mutations being implicated in various diseases impacting cells of the immune system. These mutations are typically inherited, although somatic GOF mutations are commonly observed in certain immune cell malignancies. This review details the growing appreciation of STAT proteins as a key node linking immunodeficiency, autoimmunity and cancer.

11.
Front Cell Infect Microbiol ; 12: 887278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389136

RESUMO

BCL6A is a transcriptional repressor implicated in the development and survival of B and T lymphoctyes, which is also highly expressed in many non-Hodgkin's lymphomas, such as diffuse large B cell lymphoma and follicular lymphoma. Roles in other cell types, including macrophages and non-hematopoietic cells, have also been suggested but require further investigation. This study sought to identify and characterize zebrafish BCL6A and investigate its role in immune cell development and function, with a focus on early macrophages. Bioinformatics analysis identified a homologue for BCL6A (bcl6aa), as well as an additional fish-specific duplicate (bcl6ab) and a homologue for the closely-related BCL6B (bcl6b). The human BCL6A and zebrafish Bcl6aa proteins were highly conserved across the constituent BTB/POZ, PEST and zinc finger domains. Expression of bcl6aa during early zebrafish embryogenesis was observed in the lateral plate mesoderm, a site of early myeloid cell development, with later expression seen in the brain, eye and thymus. Homozygous bcl6aa mutants developed normally until around 14 days post fertilization (dpf), after which their subsequent growth and maturation was severely impacted along with their relative survival, with heterozygous bcl6aa mutants showing an intermediate phenotype. Analysis of immune cell development revealed significantly decreased lymphoid and macrophage cells in both homozygous and heterozygous bcl6aa mutants, being exacerbated in homozygous mutants. In contrast, the number of neutrophils was unaffected. Only the homozygous bcl6aa mutants showed decreased macrophage mobility in response to wounding and reduced ability to contain bacterial infection. Collectively, this suggests strong conservation of BCL6A across evolution, including a role in macrophage biology.


Assuntos
Linfoma de Células B , Peixe-Zebra , Animais , Humanos , Macrófagos , Mesoderma , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética
12.
Biomolecules ; 12(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291730

RESUMO

JAK3 is principally activated by members of the interleukin-2 receptor family and plays an essential role in lymphoid development, with inactivating JAK3 mutations causing autosomal-recessive severe combined immunodeficiency (SCID). This study aimed to generate an equivalent zebrafish model of SCID and to characterize the model across the life-course. Genome editing of zebrafish jak3 created mutants similar to those observed in human SCID. Homozygous jak3 mutants showed reduced embryonic T lymphopoiesis that continued through the larval stage and into adulthood, with B cell maturation and adult NK cells also reduced and neutrophils impacted. Mutant fish were susceptible to lymphoid leukemia. This model has many of the hallmarks of human SCID resulting from inactivating JAK3 mutations and will be useful for a variety of pre-clinical applications.


Assuntos
Imunodeficiência Combinada Severa , Animais , Humanos , Adulto , Imunodeficiência Combinada Severa/genética , Peixe-Zebra/genética , Transdução de Sinais , Mutação , Receptores de Interleucina-2 , Janus Quinase 3/genética
13.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077499

RESUMO

Members of the FOS protein family regulate gene expression responses to a multitude of extracellular signals and are dysregulated in several pathological states. Whilst mouse genetic models have provided key insights into the tissue-specific functions of these proteins in vivo, little is known about their roles during early vertebrate embryonic development. This study examined the potential of using zebrafish as a model for such studies and, more broadly, for investigating the mechanisms regulating the functions of Fos proteins in vivo. Through phylogenetic and sequence analysis, we identified six zebrafish FOS orthologues, fosaa, fosab, fosb, fosl1a, fosl1b, and fosl2, which show high conservation in key regulatory domains and post-translational modification sites compared to their equivalent human proteins. During embryogenesis, zebrafish fos genes exhibit both overlapping and distinct spatiotemporal patterns of expression in specific cell types and tissues. Most fos genes are also expressed in a variety of adult zebrafish tissues. As in humans, we also found that expression of zebrafish FOS orthologs is induced by oncogenic BRAF-ERK signalling in zebrafish melanomas. These findings suggest that zebrafish represent an alternate model to mice for investigating the regulation and functions of Fos proteins in vertebrate embryonic and adult tissues, and cancer.


Assuntos
Proteínas Proto-Oncogênicas c-fos , Fatores de Transcrição , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Filogenia , Proteínas Proto-Oncogênicas c-fos/genética , Fatores de Transcrição/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
14.
Front Immunol ; 13: 910428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795682

RESUMO

Cytokine receptor-like factor 3 (CRLF3) is an ancient protein conserved across metazoans that contains an archetypal cytokine receptor homology domain (CHD). This domain is found in cytokine receptors present in bilateria, including higher vertebrates, that play key roles in a variety of developmental and homeostatic processes, particularly relating to blood and immune cells. However, understanding of CRLF3 itself remains very limited. This study aimed to investigate this evolutionarily significant protein by studying its embryonic expression and function in early development, particularly of blood and immune cells, using zebrafish as a model. Expression of crlf3 was identified in mesoderm-derived tissues in early zebrafish embryos, including the somitic mesoderm and both anterior and posterior lateral plate mesoderm. Later expression was observed in the thymus, brain, retina and exocrine pancreas. Zebrafish crlf3 mutants generated by genome editing technology exhibited a significant reduction in primitive hematopoiesis and early definitive hematopoiesis, with decreased early progenitors impacting on multiple lineages. No other obvious phenotypes were observed in the crlf3 mutants.


Assuntos
Hematopoese , Peixe-Zebra , Animais , Hematopoese/genética , Mesoderma , Receptores de Citocinas/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
15.
Cell Mol Life Sci ; 79(6): 322, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622134

RESUMO

BACKGROUND: Janus kinase 3 (JAK3) acts downstream of the interleukin-2 (IL-2) receptor family to play a pivotal role in the regulation of lymphoid cell development. Activating JAK3 mutations are associated with a number of lymphoid and other malignancies, with mutations within the regulatory pseudokinase domain common. METHODS: The pseudokinase domain mutations A572V and A573V were separately introduced into the highly conserved zebrafish Jak3 and transiently expressed in cell lines and zebrafish embryos to examine their activity and impact on early T cells. Genome editing was subsequently used to introduce the A573V mutation into the zebrafish genome to study the effects of JAK3 activation on lymphoid cells in a physiologically relevant context throughout the life-course. RESULTS: Zebrafish Jak3 A573V produced the strongest activation of downstream STAT5 in vitro and elicited a significant increase in T cells in zebrafish embryos. Zebrafish carrying just a single copy of the Jak3 A573V allele displayed elevated embryonic T cells, which continued into adulthood. Hematopoietic precursors and NK cells were also increased, but not B cells. The lymphoproliferative effects of Jak3 A573V in embryos was shown to be dependent on zebrafish IL-2Rγc, JAK1 and STAT5B equivalents, and could be suppressed with the JAK3 inhibitor Tofacitinib. CONCLUSIONS: This study demonstrates that a single JAK3 A573V allele expressed from the endogenous locus was able to enhance lymphopoiesis throughout the life-course, which was mediated via an IL-2Rγc/JAK1/JAK3/STAT5 signaling pathway and was sensitive to Tofacitinib. This extends our understanding of oncogenic JAK3 mutations and creates a novel model to underpin further translational investigations.


Assuntos
Janus Quinase 3 , Fator de Transcrição STAT5 , Animais , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Mutação/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
Front Biosci (Landmark Ed) ; 27(4): 110, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35468669

RESUMO

BACKGROUND: Colony-stimulating factor 3 (CSF3), more commonly known as granulocyte colony-stimulating factor (G-CSF), acts via a specific cell surface receptor CSF3R (or G-CSFR) to regulate hematopoiesis, with a particularly key role in the myeloid cell lineage where it impacts the development and function of neutrophilic granulocytes. Zebrafish possess a conserved CSF3R homologue, Csf3r, which is involved in both steady-state and emergency myelopoiesis, as well as regulating early myeloid cell migration. Two CSF3 proteins have been identified in zebrafish, Csf3a and Csf3b. METHODS: This study investigated the roles of the Csf3a and Csf3b ligands as well as the downstream Janus kinase (JAK) and phosphatidylinositol 3-kinase (PI3K) pathways in mediating the effects of Csf3r in early myeloid cell development and function using gene knockdown and pharmacologic approaches. RESULTS: This study revealed that both Csf3a and Csf3b contribute to the developmental and emergency production of early myeloid cells, but Csf3a is responsible for the developmental migration of early neutrophils whereas Csf3b plays the major role in their wounding-induced migration, differentially participated in these responses, as did several downstream signaling pathways. Both JAK and PI3K signaling were required for developmental production and migration of early myeloid cells, but PI3K signaling was required for emergency production and initial migration in response to wounding, while JAK signaling mediated retention at the site of wounding. CONCLUSIONS: This study has revealed both distinct and overlapping functions for Csf3a and Csf3b and the downstream JAK and PI3K signaling pathways in early myeloid cell production and function.


Assuntos
Fosfatidilinositol 3-Quinases , Peixe-Zebra , Animais , Fator Estimulador de Colônias de Granulócitos/genética , Janus Quinases/metabolismo , Células Mieloides , Fosfatidilinositol 3-Quinases/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
17.
FASEB J ; 36(5): e22320, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470501

RESUMO

The cytokine-inducible SH2 domain containing protein (CISH) is the founding member of the suppressor of cytokine signaling (SOCS) family of negative feedback regulators and has been shown to be a physiological regulator of signaling in immune cells. This study sought to investigate novel functions for CISH outside of the immune system. Mice deficient in CISH were generated and analyzed using a range of metabolic and other parameters, including in response to a high fat diet and leptin administration. CISH knockout mice possessed decreased body fat and showed resistance to diet-induced obesity. This was associated with reduced food intake, but unaltered energy expenditure and microbiota composition. CISH ablation resulted in reduced basal expression of the orexigenic Agrp gene in the arcuate nucleus (ARC) region of the brain. Cish was basally expressed in the ARC, with evidence of co-expression with the leptin receptor (Lepr) gene in Agrp-positive neurons. CISH-deficient mice also showed enhanced leptin responsiveness, although Cish expression was not itself modulated by leptin. CISH-deficient mice additionally exhibited improved insulin sensitivity on a high-fat diet, but not glucose tolerance despite reduced body weight. These data identify CISH as an important regulator of homeostasis through impacts on appetite control, mediated at least in part by negative regulation of the anorexigenic effects of leptin, and impacts on glucose metabolism.


Assuntos
Adiposidade , Leptina , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Citocinas/metabolismo , Ingestão de Alimentos , Glucose/metabolismo , Leptina/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo , Proteínas Supressoras da Sinalização de Citocina , Domínios de Homologia de src
18.
Brain Sci ; 12(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35204004

RESUMO

The suppressor of cytokine signaling (SOCS) proteins play important roles in cytokine and growth factor signaling, where they act principally as negative feedback regulators, particularly of the downstream signal transducer and activator of transcription (STAT) transcription factors. This critical mode of regulation impacts on both development and homeostasis. However, understanding of the function of SOCS4 remains limited. To address this, we investigated one of the zebrafish SOCS4 paralogues, socs4a, analyzing its expression and the consequences of its ablation. The socs4a gene had a dynamic expression profile during zebrafish embryogenesis, with initial ubiquitous expression becoming restricted to sensory ganglion within the developing nervous system. The knockdown of zebrafish socs4a revealed novel roles in notochord development, as well as the formation of a functional sensory system.

19.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216498

RESUMO

The IL-2 family of cytokines act via receptor complexes that share the interleukin-2 receptor gamma common (IL-2Rγc) chain to play key roles in lymphopoiesis. Inactivating IL-2Rγc mutations results in severe combined immunodeficiency (SCID) in humans and other species. This study sought to generate an equivalent zebrafish SCID model. The zebrafish il2rga gene was targeted for genome editing using TALENs and presumed loss-of-function alleles analyzed with respect to immune cell development and impacts on intestinal microbiota and tumor immunity. Knockout of zebrafish Il-2rγc.a resulted in a SCID phenotype, including a significant reduction in T cells, with NK cells also impacted. This resulted in dysregulated intestinal microbiota and defective immunity to tumor xenotransplants. Collectively, this establishes a useful zebrafish SCID model.


Assuntos
Imunodeficiência Combinada Severa/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Microbioma Gastrointestinal/fisiologia , Subunidade gama Comum de Receptores de Interleucina , Células Matadoras Naturais/metabolismo , Linfopoese/fisiologia , Modelos Animais , Fenótipo , Linfócitos T/metabolismo
20.
Front Immunol ; 13: 1095453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703974

RESUMO

Introduction: The granulocyte colony-stimulating factor receptor (G-CSFR), encoded by the CSF3R gene, is involved in the production and function of neutrophilic granulocytes. Somatic mutations in CSF3R leading to truncated G-CSFR forms are observed in acute myeloid leukemia (AML), particularly those subsequent to severe chronic neutropenia (SCN), as well as in a subset of patients with other leukemias. Methods: This investigation introduced equivalent mutations into the zebrafish csf3r gene via genome editing and used a range of molecular and cellular techniques to understand the impact of these mutations on immune cells across the lifespan. Results: Zebrafish harboring truncated G-CSFRs showed significantly enhanced neutrophil production throughout successive waves of embryonic hematopoiesis and a neutrophil maturation defect in adults, with the mutations acting in a partially dominant manner. Discussion: This study has elucidated new insights into the impact of G-CSFR truncations throughout the life-course and created a bone fide zebrafish model for further investigation.


Assuntos
Hematopoese , Receptores de Fator Estimulador de Colônias de Granulócitos , Animais , Hematopoese/genética , Leucemia Mieloide Aguda/genética , Leucopoese/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...